Cemaes Bay - Quantitative Microbial Source Apportionment
November 2017
Dr Mark Wyer, Professor David Kay, Dr Cheryl Davies, Professor Paul Brewer, Dr Bill Perkins
Supporting Organizations

Dŵr Cymru
Welsh Water

CYNGOR SIR YNYSG MÔN
ISLE OF ANGLESEY
COUNTY COUNCIL

Cyfoeth Naturiol Cymru
Natural Resources Wales

Acclimatize
Cemaes Bay

- Poor water quality classification
- The only one in Wales
- Infrastructure improvement 30th April 2015 – “Step Change”
- UV disinfection of effluent discharging to the local river
Data Sources

- Operational data
 - Llanfechell STW effluent – FIO concentrations and discharge
 - Overflow event duration monitoring (EDM) data

- Coastal hydrodynamic modelling initiative
 - Discharge and FIO concentrations in rivers and streams
 - FIO concentrations in STW effluent at Anglesey STWs
 - Storm inlet and storm tank overflow FIO concentrations
 - Targeted dry and wet weather event sampling

- River and stream FIO concentration data

- Bathing water compliance data
- Dry weather: 58.48% of total discharge
- Wet weather event: 41.52% of total discharge (duration: 28.56% of study)
River/stream catchment areas
Llanfechell STW: Discharge

- Dry weather: 59.80% of total discharge
- Wet weather event: 40.20% of total discharge
Llanfechell SPS Overflow: Discharge

- EDM data 7 overflows, 5 in bathing season
- Duration: 0.35% of study, 1.22% of event
Afon Wygyr: Sampling

- Samples categorized according to flow condition
- 37 dry weather samples, 24 wet weather event samples
E. coli: rivers and streams

![Graph showing concentration of E. coli in different streams](image)

- **A. E. coli**
 - Traeth Bach Stream
 - Afon Wygyr Site
 - Pig-y-Barcud

† - statistically significant difference

![Diagram legend](image)
Intestinal Enterococci: rivers and streams

† - statistically significant difference
† - statistically significant difference
Discharge: 9.75×10^5 m3

- Storm overflow: 0.04% of total
- Dominated by rivers and streams: 97.49% of total
E. coli: 6.32×10^{13} organisms

- Llanfechell effluent: 0.02% of total
- Wet weather event conditions dominate the load and rivers_streams are the dominant inputs – 86.09% of event load
- High proportion from Traeth Bach stream *cf.* discharge in dry weather
- High proportion from storm overflow *cf.* discharge in wet weather
Intestinal enterococci: 2.47×10^{13} organisms

- Llanfechell effluent: 0.06% of total
- Wet weather event conditions dominate the load and rivers/streams are the dominant inputs – 95.3% of event load
- High proportion from Traeth Bach stream *cf.* discharge in dry weather
- High proportion from storm overflow *cf.* discharge in wet weather
No UV *E. coli*: 7.94×10^{13} organisms

2016 FIO data from five biofiltration STWs on Anglesey

- Dry weather input from Pig-y-Barcud: 0.72%
- UV reduces the Llanfechell effluent *E. coli* load by > 99%
- Wet weather event conditions still dominate - with rivers and streams generating 70.68% of the event load
No UV IE: 2.82×10^{13} organisms

- 2016 FIO data from five biofiltration STWs on Anglesey
- Dry weather input from Pig-y-Barcud: 1.02%
- UV reduces the Llanfechell effluent *E. coli* load by > 99%
- Wet weather event conditions still dominate - with rivers and streams generating 88.16% of the event load
Afon Wygyr: event conditions
Cemaes Bay: event

- Cemaes Bay – during the same event (30 – 40 NTU)
Microbial load reduction from “Step Change”

<table>
<thead>
<tr>
<th></th>
<th>Dry Weather (%)</th>
<th>Event (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction</td>
<td>28.06</td>
<td>18.69</td>
<td>20.49</td>
</tr>
<tr>
<td>Remaining†</td>
<td>71.94</td>
<td>81.31</td>
<td>79.51</td>
</tr>
<tr>
<td>Intestinal enterococci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction</td>
<td>25.90</td>
<td>7.48</td>
<td>11.53</td>
</tr>
<tr>
<td>Remaining†</td>
<td>74.10</td>
<td>92.52</td>
<td>88.47</td>
</tr>
</tbody>
</table>

† - load from catchment sources
Any effect at the DSP?

- ANOVA - No statistically significant difference between annual GMs
Any effect at the DSP?

- ANOVA - No statistically significant difference between annual GMs
Any effect at the DSP?

- 2-tailed t-test – no statistically significant difference in GMs
- 1-tailed t-test – Post UV GM significantly lower than Pre UV GM for *E. coli* only
Cemaes Bay compliance

<table>
<thead>
<tr>
<th>Year</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Poor</td>
</tr>
<tr>
<td>2016</td>
<td>Poor</td>
</tr>
<tr>
<td>2015</td>
<td>Sufficient</td>
</tr>
<tr>
<td>2014-projected</td>
<td>Sufficient</td>
</tr>
</tbody>
</table>

- The step change has not had the desired effect on compliance
- Enterococci is the driving compliance parameter – the step change did not produce a large enough reduction in the enterococci load
- Robust prediction and discounting is required whilst actions to reduce enterococci loading in the catchment are sought and implemented
Cemaes Bay - Acclimatize

- Detailed sampling - 30 min interval 07:00 – 19:00 GMT on 61 days during 2017
- Detailed hydrological monitoring of river and stream inputs
- Meteorological monitoring – including solar radiation, wind
- Goal => prediction system in place by 2018 bathing season
DSP results – enterococci

- Large variation ≈ 2 orders in each day (max: 3.6 orders)
- Elevation in response to event conditions – even relatively small events
DSP results Swansea 2011

- Large variation ≈ 1.4 orders in each day (max: 3.1 orders)
- Similar pattern to Cemaes
Within-day variability

- Two beaches sampled similarly to characterize water quality in the “bathing day”:
 - Swansea – urban beach, complex inputs
 - Cemaes – rural beach, relatively simple inputs

- Sampling at Bray (Ireland) and Aberafan has also shown within-day variability

- Prediction systems – with a public health outcome - need to take this into account

- Questions the suitability of compliance data (now < 1 sample per week) for prediction systems…